Harmonic sections of polynomial growth
نویسندگان
چکیده
منابع مشابه
Harmonic Functions with Polynomial Growth
Twenty years ago Yau generalized the classical Liouville theo rem of complex analysis to open manifolds with nonnegative Ricci curva ture Speci cally he proved that a positive harmonic function on such a manifold must be constant This theorem of Yau was considerably generalized by Cheng Yau see by means of a gradient estimate which implies the Harnack inequality As a consequence of this gradien...
متن کاملOn the harmonic index and harmonic polynomial of Caterpillars with diameter four
The harmonic index H(G) , of a graph G is defined as the sum of weights 2/(deg(u)+deg(v)) of all edges in E(G), where deg (u) denotes the degree of a vertex u in V(G). In this paper we define the harmonic polynomial of G. We present explicit formula for the values of harmonic polynomial for several families of specific graphs and we find the lower and upper bound for harmonic index in Caterpill...
متن کاملPolynomial Harmonic Decompositions
For real polynomials in two indeterminates a classical polynomial harmonic decomposition (cf. (1) below) is extended from square-norm divisors to conic ones. The main result is then applied to obtain a full polynomial harmonic decomposition, and to solve a Dirichlet problem with polynomial boundary data. Harmonic functions are of utmost importance in analysis, geometry, and mathematical physics...
متن کاملon the harmonic index and harmonic polynomial of caterpillars with diameter four
the harmonic index h(g) , of a graph g is defined as the sum of weights 2/(deg(u)+deg(v)) of all edges in e(g), where deg (u) denotes the degree of a vertex u in v(g). in this paper we define the harmonic polynomial of g. we present explicit formula for the values of harmonic polynomial for several families of specific graphs and we find the lower and upper bound for harmonic index in caterpill...
متن کاملHarmonic Analysis of Polynomial Threshold Functions
The analysis of linear threshold Boolean functions has recently attracted the attention of those interested in circuit complexity as well as of those interested in neural networks. Here a generalization of linear threshold functions is defined, namely, polynomial threshold functions, and its relation to the class of linear threshold functions is investigated. A Boolean function is polynomial th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Research Letters
سال: 1997
ISSN: 1073-2780,1945-001X
DOI: 10.4310/mrl.1997.v4.n1.a4